Compactness of solutions to the Yamabe problem

نویسندگان

  • YanYan Li
  • Lei Zhang
چکیده

We establish compactness of solutions to the Yamabe problem on any smooth compact connected Riemannian manifold (not conformally diffeomorphic to standard spheres) of dimension n 7 as well as on any manifold of dimension n 8 under some additional hypothesis. To cite this article: Y.Y. Li, L. Zhang, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé Compacité des solutions du problème de Yamabe. On établit la compacité des solutions du problème de Yamabe sur toute variété riemannienne, régulière compacte connexe (non conformément équivalente à la sphère standard) de dimension n 7. Le même résultat est valable en dimension n 8 sous une hypothèse supplémentaire. Pour citer cet article : Y.Y. Li, L. Zhang, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. Version française abrégée Soit (M,g) une variété riemannienne régulière, compacte et connexe sans bord de dimension n. On considère l’équation de Yamabe − gu+ n− 2 4(n− 1)Rgu= u (n+2)/(n−2), u > 0, sur M, (1) où g désigne l’opérateur de Laplace–Beltrami. Soit M= {u | u ∈ C2(M), u vérifie (1)}. On considère les deux cas suivant : E-mail addresses: [email protected] (Y.Y. Li), [email protected] (L. Zhang). 1631-073X/$ – see front matter  2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.02.018 694 Y.Y. Li, L. Zhang / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 693–695 1◦. Dimension de M 7. 2◦. Dimension de M 8 et |Wg |> 0 sur M , où Wg désigne le tenseur de Weyl de g. Théorème 0.1. On suppose que (M,g) n’est pas conformément équivalent à la sphère standard. On fait l’hypothèse 1◦ ou 2◦. Alors il existe une constante C dependant seulement de (M,g) telle que ‖u‖L∞(M) C ∀u ∈M. 1. The Yamabe conjecture Let (M,g) be an n-dimensional smooth compact Riemannian manifold without boundary. For n 3, the Yamabe conjecture states that there exist metrics which are pointwise conformal to g and have constant scalar curvature. The Yamabe conjecture was proved through the works of Yamabe [11], Trudinger [10], Aubin [1] and Schoen [8]. Different proofs in the case n 5 and in the case (M,g) is locally conformally flat were given by Bahri and Brezis [3] and Bahri [2]. Consider the Yamabe equation − gu+ n− 2 4(n− 1)Rgu= u (n+2)/(n−2), u > 0, on M, (2) where g denotes the Laplace–Beltrami operator. Let M= {u | u ∈ C2(M), u satisfies (2)}. For n 3, under the assumption that (M,g) is locally conformally flat and is not conformally diffeomorphic to standard spheres, Schoen proved in 1991, see [9], that for any non-negative integer k, ‖u‖Ck(M,g) C, ∀u ∈M, (3) where C is some constant depending only on (M,g) and k. He also announced in the same paper the same result for general Riemannian manifolds, without the locally conformally flatness assumption. The proof of this claim has not been made available. For general Riemannian manifolds of dimension n= 3, a proof was given by Li and Zhu in [7]; while for dimension n= 4, the combination of results of Li and Zhang [5] and Druet [4] yields a proof.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Compactness Theorem for the Yamabe Problem

In this paper, we prove compactness for the full set of solutions to the Yamabe Problem if n ≤ 24. After proving sharp pointwise estimates at a blowup point, we prove the Weyl Vanishing Theorem in those dimensions, and reduce the compactness question to showing positivity of a quadratic form. We also show that this quadratic form has negative eigenvalues if n ≥ 25.

متن کامل

A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound

We prove compactness of solutions of a fully nonlinear Yamabe problem satisfying a lower Ricci curvature bound, when the manifold is not conformally diffeomorphic to the standard sphere. This allows us to prove the existence of solutions when the associated cone Γ satisfies μ+Γ ≤ 1, which includes the σk−Yamabe problem for k not smaller than half of the dimension of the manifold.

متن کامل

2 00 6 Compactness of solutions to the Yamabe problem . III YanYan

For a sequence of blow up solutions of the Yamabe equation on non-locally confonformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates ...

متن کامل

Compactness of solutions to the Yamabe problem . III

For a sequence of blow up solutions of the Yamabe equation on non-locally conformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates wou...

متن کامل

A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary

We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004